嘉利顿大学世界排名

本项目链接: https://aistudio.baidu.com/aistudio/projectdetail/4160689?contributionType=1

项目主页: https://aistudio.baidu.com/aistudio/usercenter

0.信息抽取定义以及难点

自动从无结构或半结构的文本中抽取出结构化信息的任务, 主要包含的任务包含了实体识别、关系抽取、事件抽取、情感分析、评论抽取等任务; 同时信息抽取涉及的领域非常广泛,信息抽取的技术需求高,下面具体展现一些示例

需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。

针对以上难题,中科院软件所和百度共同提出了一个大一统诸多任务的通用信息抽取技术 UIE(Unified Structure Generation for Universal Information Extraction),发表在ACL‘22。UIE在实体、关系、事件和情感等4个信息抽取任务、13个数据集的全监督、低资源和少样本设置下,UIE均取得了SOTA性能。

PaddleNLP结合文心大模型中的知识增强NLP大模型ERNIE 3.0,发挥了UIE在中文任务上的强大潜力,开源了首个面向通用信息抽取的产业级技术方案,不需要标注数据(或仅需少量标注数据),即可快速完成各类信息抽取任务。

**链接指路:https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie )

1.使用PaddleNLP Taskflow工具解决信息抽取难点(中文版本)1.1安装PaddleNLP

! pip install --upgrade paddlenlp! pip show paddlenlp

1.2 使用Taskflow UIE任务看看效果人力资源入职证明信息抽取

from paddlenlp import Taskflow schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']ie = Taskflow('information_extraction', schema=schema)

schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']ie.set_schema(schema)ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。')

[{'姓名': [{'text': '凌霄', 'start': 3, 'end': 5, 'probability': 0.9042383385504706}], '毕业院校': [{'text': '嘉利顿大学', 'start': 28, 'end': 33, 'probability': 0.9927952662605009}], '职位': [{'text': '总经理助理', 'start': 44, 'end': 49, 'probability': 0.9922470268350594}], '月收入': [{'text': '12000 元', 'start': 77, 'end': 84, 'probability': 0.9788556518998917}], '身体状况': [{'text': '良好', 'start': 92, 'end': 94, 'probability': 0.9939678710475306}]}]

# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出from pprint import pprintpprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))

医疗病理分析

schema = ['肿瘤部位', '肿瘤大小']ie.set_schema(schema)ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')

[{'姓名': [{'text': '凌霄', 'start': 3, 'end': 5, 'probability': 0.9042383385504706}], '毕业院校': [{'text': '嘉利顿大学', 'start': 28, 'end': 33, 'probability': 0.9927952662605009}], '职位': [{'text': '总经理助理', 'start': 44, 'end': 49, 'probability': 0.9922470268350594}], '月收入': [{'text': '12000 元', 'start': 77, 'end': 84, 'probability': 0.9788556518998917}], '身体状况': [{'text': '良好', 'start': 92, 'end': 94, 'probability': 0.9939678710475306}]}]

# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出from pprint import pprintpprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))

医疗病理分析

schema = ['肿瘤部位', '肿瘤大小']ie.set_schema(schema)ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')

[{'肿瘤部位': [{'text': '胃窦体部', 'start': 13, 'end': 17, 'probability': 0.9601818899487213}], '肿瘤大小': [{'text': '6*2cm', 'start': 20, 'end': 25, 'probability': 0.9670914301489972}]}]

1.3使用Taskflow UIE进行实体抽取、关系抽取、事件抽取、情感分类、观点抽取

# 实体抽取schema = ['时间', '赛手', '赛事名称']ie.set_schema(schema)ie('2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!')

[{'时间': [{'text': '2月8日上午', 'start': 0, 'end': 6, 'probability': 0.9857379716035553}], '赛手': [{'text': '中国选手谷爱凌', 'start': 24, 'end': 31, 'probability': 0.7232891682586384}], '赛事名称': [{'text': '北京冬奥会自由式滑雪女子大跳台决赛', 'start': 6, 'end': 23, 'probability': 0.8503080086948529}]}]

# 关系抽取schema = {'歌曲名称': ['歌手', '所属专辑']} ie.set_schema(schema)ie('《告别了》是孙耀威在专辑爱的故事里面的歌曲')

[{'歌曲名称': [{'text': '告别了', 'start': 1, 'end': 4, 'probability': 0.629614912348881, 'relations': {'歌手': [{'text': '孙耀威', 'start': 6, 'end': 9, 'probability': 0.9988381005599081}], '所属专辑': [{'text': '爱的故事', 'start': 12, 'end': 16, 'probability': 0.9968462078543183}]}}, {'text': '爱的故事', 'start': 12, 'end': 16, 'probability': 0.28168707817316374, 'relations': {'歌手': [{'text': '孙耀威', 'start': 6, 'end': 9, 'probability': 0.9951415104192272}]}}]}]

# 事件抽取schema = {'地震触发词': ['地震强度', '时间', '震中位置', '震源深度']} # 事件需要通过xxx触发词来选择触发词ie.set_schema(schema)ie('中国地震台网正式测定:5月16日06时08分在云南临沧市凤庆县(北纬24.34度,东经99.98度)发生3.5级地震,震源深度10千米。')

[{'地震触发词': [{'text': '地震', 'start': 56, 'end': 58, 'probability': 0.9977425555988333, 'relations': {'地震强度': [{'text': '3.5级', 'start': 52, 'end': 56, 'probability': 0.998080217831891}], '时间': [{'text': '5月16日06时08分', 'start': 11, 'end': 22, 'probability': 0.9853299772936026}], '震中位置': [{'text': '云南临沧市凤庆县(北纬24.34度,东经99.98度)', 'start': 23, 'end': 50, 'probability': 0.7874014521275967}], '震源深度': [{'text': '10千米', 'start': 63, 'end': 67, 'probability': 0.9937974422968665}]}}]}]

# 情感倾向分类schema = '情感倾向[正向,负向]' # 分类任务需要[]来设置分类的labelie.set_schema(schema) ie('这个产品用起来真的很流畅,我非常喜欢')

[{'情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.9990024058203417}]}]

# 评价抽取schema = {'评价维度': ['观点词', '情感倾向[正向,负向]']} # 评价抽取的schema是固定的,后续直接按照这个schema进行观点抽取ie.set_schema(schema) # Reset schemaie('地址不错,服务一般,设施陈旧')

[{'评价维度': [{'text': '地址', 'start': 0, 'end': 2, 'probability': 0.9888139270606509, 'relations': {'观点词': [{'text': '不错', 'start': 2, 'end': 4, 'probability': 0.9927845886615216}], '情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.998228967796706}]}}, {'text': '设施', 'start': 10, 'end': 12, 'probability': 0.9588298547520608, 'relations': {'观点词': [{'text': '陈旧', 'start': 12, 'end': 14, 'probability': 0.928675281256794}], '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9949388606013692}]}}, {'text': '服务', 'start': 5, 'end': 7, 'probability': 0.9592857070501211, 'relations': {'观点词': [{'text': '一般', 'start': 7, 'end': 9, 'probability': 0.9949359182521675}], '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9952498258302498}]}}]}]

# 跨任务跨领域抽取schema = ['寺庙', {'丈夫': '妻子'}] # 抽取的任务中包含了实体抽取和关系抽取ie.set_schema(schema)ie('李治即位后,让身在感业寺的武则天续起头发,重新纳入后宫。')

[{'寺庙': [{'text': '感业寺', 'start': 9, 'end': 12, 'probability': 0.9888581774497425}], '丈夫': [{'text': '李治', 'start': 0, 'end': 2, 'probability': 0.989690572797457, 'relations': {'妻子': [{'text': '武则天', 'start': 13, 'end': 16, 'probability': 0.9987625986790256}]}}]}]

1.4使用Taskflow UIE一些技巧1.4.1. 调整batch_size提升预测效率

from paddlenlp import Taskflowschema = ['费用']ie.set_schema(schema)ie = Taskflow('information_extraction', schema=schema, batch_size=2) #资源不充裕情况,batch_size设置小点,利用率增加。。ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

[{'费用': [{'text': '46块钱', 'start': 13, 'end': 17, 'probability': 0.9781786110574338}]}, {'费用': [{'text': '110元', 'start': 11, 'end': 15, 'probability': 0.9504088995163151}]}, {'费用': [{'text': '46元', 'start': 21, 'end': 24, 'probability': 0.9753814247531167}]}, {'费用': [{'text': '21元', 'start': 15, 'end': 18, 'probability': 0.9761294626311425}]}]

1.4.2. 使用UIE-Tiny模型来加快模型预测速度

from paddlenlp import Taskflowschema = ['费用']ie.set_schema(schema)ie = Taskflow('information_extraction', schema=schema, batch_size=2, model='uie-tiny') #ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

[{'费用': [{'text': '46块钱', 'start': 13, 'end': 17, 'probability': 0.8945340489542026}]}, {'费用': [{'text': '110元', 'start': 11, 'end': 15, 'probability': 0.9757676375014448}]}, {'费用': [{'text': '46元', 'start': 21, 'end': 24, 'probability': 0.860397941604333}]}, {'费用': [{'text': '21元', 'start': 15, 'end': 18, 'probability': 0.8595131018474689}]}]

2.小样本提升UIE效果

Taskflow中的UIE基线版本我们是通过大量的有标签样本进行训练,但是UIE抽取的效果面对部分子领域的效果也不是令人满意,UIE可以通过小样本就可以快速提升效果。 为什么UIE可以通过小样本来提升效果呢?UIE的建模方式主要是通过 Prompt 方式来建模, Prompt 在小样本上进行微调效果非常有效,下面我们通过一个具体的case 来展示UIE微调的效果。

2.1语音报销工单信息抽取1. 背景

在某公司内部可以通过语音输入来报销打车费用,通过语音ASR模型可以将语音识别为文字,同时对文字信息进行信息抽取,抽取的信息主要是包括了4个方面,时间、出发地、目的地、费用,通过对文字4个方面的信息进行抽取就可以完成一个报销工单的填写。

2. 挑战

目前Taskflow UIE任务对于这种非常垂类的任务效果没有完全达到工业使用水平,因此需要一定的微调手段来完成UIE模型的微调来提升模型的效果,下面是一些case的展现

ie.set_schema(['时间', '出发地', '目的地', '费用'])ie('10月16日高铁从杭州到上海南站车次d5414共48元') # 无法准确抽取出发地、目的地

[{'时间': [{'text': '10月16日', 'start': 0, 'end': 6, 'probability': 0.9552445817793149}], '出发地': [{'text': '杭州', 'start': 9, 'end': 11, 'probability': 0.5713024802221334}], '费用': [{'text': '48元', 'start': 24, 'end': 27, 'probability': 0.8932524634666485}]}]

2.2 标注数据

参考链接详细版本—doccano标注过程 我们推荐使用数据标注平台doccano 进行数据标注,本案例也打通了从标注到训练的通道,即doccano导出数据后可通过doccano.py脚本轻松将数据转换为输入模型时需要的形式,实现无缝衔接。为达到这个目的,您需要按以下标注规则在doccano平台上标注数据:

Step 1. 本地安装doccano(请勿在AI Studio内部运行,本地测试环境python=3.8)

$ pip install doccano

Step 2. 初始化数据库和账户(用户名和密码可替换为自定义值)

$ doccano init

$ doccano createuser –username my_admin_name –password my_password

Step 3. 启动doccano

在一个窗口启动doccano的WebServer,保持窗口

$ doccano webserver –port 8000

在另一个窗口启动doccano的任务队列

$ doccano task

Step 4. 运行doccano来标注实体和关系

打开浏览器(推荐Chrome),在地址栏中输入http://127.0.0.1:8000/后回车即得以下界面。登陆账户。点击右上角的LOGIN,输入Step 2中设置的用户名和密码登陆。创建项目。点击左上角的CREATE,跳转至以下界面。勾选序列标注(Sequence Labeling)填写项目名称(Project name)等必要信息勾选允许实体重叠(Allow overlapping entity)、使用关系标注(Use relation labeling)创建完成后,项目首页视频提供了从数据导入到导出的七个步骤的详细说明。设置标签。在Labels一栏点击Actions,Create Label手动设置或者Import Labels从文件导入。最上边Span表示实体标签,Relation表示关系标签,需要分别设置。导入数据。在Datasets一栏点击Actions、Import Dataset从文件导入文本数据。根据文件格式(File format)给出的示例,选择适合的格式导入自定义数据文件。导入成功后即跳转至数据列表。标注数据。点击每条数据最右边的Annotate按钮开始标记。标记页面右侧的标签类型(Label Types)开关可在实体标签和关系标签之间切换。实体标注:直接用鼠标选取文本即可标注实体。关系标注:首先点击待标注的关系标签,接着依次点击相应的头尾实体可完成关系标注。导出数据。在Datasets一栏点击Actions、Export Dataset导出已标注的数据。将标注数据转化成UIE训练所需数据将doccano平台的标注数据保存在./data/目录。对于语音报销工单信息抽取的场景,可以直接下载标注好的数据。各个任务标注文档

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/uie/doccano.md

! wget https://paddlenlp.bj.bcebos.com/datasets/erniekit/speech-cmd-analysis/audio-expense-account.jsonl! mv audio-expense-account.jsonl ./data/

运行以下代码将标注数据转换为UIE训练所需要的数据 splits 0.2 0.8 0.0 训练集 测试集 验证集

可配置参数说明doccano_file: 从doccano导出的数据标注文件。save_dir: 训练数据的保存目录,默认存储在data目录下。negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。task_type: 选择任务类型,可选有抽取和分类两种类型的任务。options: 指定分类任务的类别标签,该参数只对分类类型任务有效。prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。is_shuffle: 是否对数据集进行随机打散,默认为True。seed: 随机种子,默认为1000.

! python preprocess.py --input_file ./data/audio-expense-account.jsonl --save_dir ./data/ --negative_ratio 5 --splits 0.2 0.8 0.0 --seed 1000

2.3 训练UIE模型使用标注数据进行小样本训练,模型参数保存在./checkpoint/目录。

tips: 推荐使用GPU环境,否则可能会内存溢出。CPU环境下,可以修改model为uie-tiny,适当调下batch_size。

增加准确率的话:–num_epochs 设置大点多训练训练

可配置参数说明:train_path: 训练集文件路径。dev_path: 验证集文件路径。save_dir: 模型存储路径,默认为./checkpoint。learning_rate: 学习率,默认为1e-5。batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。max_seq_len: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。num_epochs: 训练轮数,默认为100。model: 选择模型,程序会基于选择的模型进行模型微调,可选有uie-base和uie-tiny,默认为uie-base。seed: 随机种子,默认为1000.logging_steps: 日志打印的间隔steps数,默认10。valid_steps: evaluate的间隔steps数,默认100。device: 选用什么设备进行训练,可选cpu或gpu。

! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-tiny --learning_rate 1e-5 --batch_size 2 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10

#! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-base --learning_rate 1e-5 --batch_size 16 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10

使用小样本训练后的模型参数再次测试无法正确抽取的case。

from paddlenlp import Taskflowschema = ['时间', '出发地', '目的地', '费用']few_ie = Taskflow('information_extraction', schema=schema, task_path='./checkpoint/model_best')few_ie(['10月16日高铁从杭州到上海南站车次d5414共48元', '10月22日从公司到首都机场38元过路费'])

[{'时间': [{'text': '10月16日', 'start': 0, 'end': 6, 'probability': 0.9998620769863464}], '出发地': [{'text': '杭州', 'start': 9, 'end': 11, 'probability': 0.997861665709749}], '目的地': [{'text': '上海南站', 'start': 12, 'end': 16, 'probability': 0.9974161074329579}], '费用': [{'text': '48', 'start': 24, 'end': 26, 'probability': 0.950222029031579}]}, {'时间': [{'text': '10月22日', 'start': 0, 'end': 6, 'probability': 0.9995716364718135}], '目的地': [{'text': '首都机场', 'start': 10, 'end': 14, 'probability': 0.9984550308953608}], '费用': [{'text': '38', 'start': 14, 'end': 16, 'probability': 0.9465688451171062}]}]

声明:壹贝网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,版权归原作者wangteng@admin所有,原文出处。若您的权利被侵害,请联系 756005163@qq.com 删除。

本文链接:https://www.ebaa.cn/38014.html

(0)
上一篇 2024年12月9日
下一篇 2024年12月9日

相关推荐

  • 新西兰国旗(新西兰国旗图案)

    因为现总理去休产假了,所以温斯顿·彼特斯暂代新西兰总理,处理国内外事务。 手中拿了点权力,也开始飘了。这不,温斯顿又开始怒刷存在感了。他直接把炮口对准了澳大利亚,强烈要求“好基友”更换使用了六十多年的国旗。 他指责澳大利亚抄袭了新西兰的国旗,并强调新西兰早隔壁澳大利亚五十年的时间就已经设计并通过了自己的国旗方案,所以让澳大利亚更换国旗是非常合理的需求。 “由…

    2023年10月17日
  • 哈佛大学裸奔节(哈佛大学裸奔是真的吗)

    作为常春藤联盟的重要成员,哈佛大学(Harvard University)是世界高等院校的最佳典范之一,在多项世界大学排名中位居前列,在全球范围内家喻户晓。不过,对于这所世界级的高等学府,你真的了解它吗?又或者说它会有怎样“不为人知”的另一面呢? 1 哈佛学生有没有作弊的? 回答是肯定的。哈佛的作弊和哈佛的学术研究一样源远流长。说谎、作弊、欺骗的事件在校园里…

    2023年9月19日
  • 杭州绿城育华学校_杭州绿城育华学校入学条件

    近日,杭州市教育局发布了《关于2022年普通高中特色班招生工作的通知》。相比往年,今年“特色班”招生人数明显增加,有多所高中增设特色班。像杭州绿城育华学校,就增设了“语言特色班(德语)”(以下简称德语特色班),2022年计划招生60人(该校普高班计划招生280人,也比去年多了40个名额)。 高中各类特色班纷纷扩招,与其近年颇受考生和家长欢迎有关。曾有家长坦言…

    2024年3月20日
  • 新万博全称l

    记者 | 吴容 编辑 | 昝慧昉 继KK馆、KKV、THE COLORIST调色师之后,KK集团最近推出了潮玩集合店品牌X11。 目前X11已在上海环球港、上海南翔印象城、广州悦汇城开设三家实体店。其品牌名“X11中”的“X”代表着对未知的探索、对潮流的好奇,以及对跨次元的创新。 界面新闻在X11广州悦汇城门店看到,这里占地面积约为1000平米,分为盲盒、手…

    2023年11月29日
  • 西交利物浦大学研究生一年多少钱_西交利物浦大学研究生一年费用

    这是来自公众号索斯留学关于一年半读完研究生,西交利物浦大学硕士需要多少费用?的一篇文章。 随着全球化的加剧和教育国际化的趋势,越来越多的学生选择去海外留学深造。西交利物浦大学作为中英合作办学的示范性项目,吸引了众多学生的关注。 学校在中国苏州设有校区,学费相对于其他国际大学可能较为亲民。根据学校官方网站的信息,2022年入学的硕士课程学费为人民币105,00…

    2024年3月7日
  • 北卡罗来纳州立大学最新排名

    美国北卡罗来纳州立大学在2020年《美国新闻与世界报道》美国全国性大学排名中排名第84名,在2020年QS世界大学排名中排名第285名。 北卡罗来纳州立大学专业排名 QS世界大学材料科学专业排名 2019年 第101名 QS世界大学数学专业排名 2019年 第251名 QS世界大学物理与天文专业排名 2019年 第251名 QS世界大学计算机科学与信息系统专…

    2025年8月26日
  • 重点大学有哪些

    中国大学接近三千所,但重点大学数量却十分有限。重点大学在不同历史时期的含义和数量是不同的,1959年中央确定20所高校为全国重点大学,1960年增加为64所,到1978年最终确定为88所。进入20世纪90年代以来,国家没有再划定重点大学的标准,也没有明确哪些大学是重点大学。但随着国家“211”工程、“985”工程和“双一流”工程的推进,进入这些重点建设工程的…

    2024年6月2日
  • alevel课程培训费用(alevel课程培训费用eufghjkkk)

    南都讯 记者梁艳燕 今年,11个中外合作办学项目纳入广州中招系统第三批次进行招生录取,1个中外合作办学项目纳入第四批次进行招生录取,4个中外合作办学项目预计在补录阶段进场。在第三批次招生的中外合作办学项目中,广外AP课程以693分拔得头筹。 3个课程项目录取分超过600分 纳入第三批次的11个项目分别为省实中英课程艺术设计班、省实中美AP课程班、省实中英A-…

    2023年11月23日
  • 同济大学中外合作办学招生简章

    为贯彻落实《国务院关于深化考试招生制度改革的实施意见》,按照教育部《关于2021年继续做好重点高校招生专项计划实施工作的通知》(教学司〔2021〕3号)等文件要求,同济大学结合自身办学特色和人才培养需要,2021年继续实施“筑梦计划”(即“高校专项计划”),对农村学生进行单独自主招生,特制定本招生简章。 一、招生对象及报名条件 主要招收边远、原贫困、民族等地…

    2025年12月24日
  • ucl是什么大学学费_ucl的学费

    TIMES搞过一个排名,揭露了一些最喜欢招中国学生的学校,分别根据中国学生占比,贡献的学费,以及对中国学生依赖比例做了个排名。排名越靠前,说明国内留学生对其越是真爱。 今天我们看下中国的留学生们,都把学费交给了哪些学校? No.1 UCL 学费1.27亿英镑 伦敦大学学院UCL当之无愧的中国留学生最喜欢的英国高校之一,学神喜欢拿ucl保底,学霸喜欢多申ucl…

    2024年2月28日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信