嘉利顿大学世界排名

本项目链接: https://aistudio.baidu.com/aistudio/projectdetail/4160689?contributionType=1

项目主页: https://aistudio.baidu.com/aistudio/usercenter

0.信息抽取定义以及难点

自动从无结构或半结构的文本中抽取出结构化信息的任务, 主要包含的任务包含了实体识别、关系抽取、事件抽取、情感分析、评论抽取等任务; 同时信息抽取涉及的领域非常广泛,信息抽取的技术需求高,下面具体展现一些示例

需求跨领域跨任务:领域之间知识迁移难度高,如通用领域知识很难迁移到垂类领域,垂类领域之间的知识很难相互迁移;存在实体、关系、事件等不同的信息抽取任务需求。定制化程度高:针对实体、关系、事件等不同的信息抽取任务,需要开发不同的模型,开发成本和机器资源消耗都很大。训练数据无或很少:部分领域数据稀缺,难以获取,且领域专业性使得数据标注门槛高。

针对以上难题,中科院软件所和百度共同提出了一个大一统诸多任务的通用信息抽取技术 UIE(Unified Structure Generation for Universal Information Extraction),发表在ACL‘22。UIE在实体、关系、事件和情感等4个信息抽取任务、13个数据集的全监督、低资源和少样本设置下,UIE均取得了SOTA性能。

PaddleNLP结合文心大模型中的知识增强NLP大模型ERNIE 3.0,发挥了UIE在中文任务上的强大潜力,开源了首个面向通用信息抽取的产业级技术方案,不需要标注数据(或仅需少量标注数据),即可快速完成各类信息抽取任务。

**链接指路:https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/uie )

1.使用PaddleNLP Taskflow工具解决信息抽取难点(中文版本)1.1安装PaddleNLP

! pip install --upgrade paddlenlp! pip show paddlenlp

1.2 使用Taskflow UIE任务看看效果人力资源入职证明信息抽取

from paddlenlp import Taskflow schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']ie = Taskflow('information_extraction', schema=schema)

schema = ['姓名', '毕业院校', '职位', '月收入', '身体状况']ie.set_schema(schema)ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。')

[{'姓名': [{'text': '凌霄', 'start': 3, 'end': 5, 'probability': 0.9042383385504706}], '毕业院校': [{'text': '嘉利顿大学', 'start': 28, 'end': 33, 'probability': 0.9927952662605009}], '职位': [{'text': '总经理助理', 'start': 44, 'end': 49, 'probability': 0.9922470268350594}], '月收入': [{'text': '12000 元', 'start': 77, 'end': 84, 'probability': 0.9788556518998917}], '身体状况': [{'text': '良好', 'start': 92, 'end': 94, 'probability': 0.9939678710475306}]}]

# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出from pprint import pprintpprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))

医疗病理分析

schema = ['肿瘤部位', '肿瘤大小']ie.set_schema(schema)ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')

[{'姓名': [{'text': '凌霄', 'start': 3, 'end': 5, 'probability': 0.9042383385504706}], '毕业院校': [{'text': '嘉利顿大学', 'start': 28, 'end': 33, 'probability': 0.9927952662605009}], '职位': [{'text': '总经理助理', 'start': 44, 'end': 49, 'probability': 0.9922470268350594}], '月收入': [{'text': '12000 元', 'start': 77, 'end': 84, 'probability': 0.9788556518998917}], '身体状况': [{'text': '良好', 'start': 92, 'end': 94, 'probability': 0.9939678710475306}]}]

# Jupyter Notebook默认做了格式化输出,如果使用其他代码编辑器,可以使用Python原生包pprint进行格式化输出from pprint import pprintpprint(ie('兹证明凌霄为本单位职工,已连续在我单位工作5 年。学历为嘉利顿大学毕业,目前在我单位担任总经理助理 职位。近一年内该员工在我单位平均月收入(税后)为 12000 元。该职工身体状况良好。本单位仅此承诺上述表述是正确的,真实的。'))

医疗病理分析

schema = ['肿瘤部位', '肿瘤大小']ie.set_schema(schema)ie('胃印戒细胞癌,肿瘤主要位于胃窦体部,大小6*2cm,癌组织侵及胃壁浆膜层,并侵犯血管和神经。')

[{'肿瘤部位': [{'text': '胃窦体部', 'start': 13, 'end': 17, 'probability': 0.9601818899487213}], '肿瘤大小': [{'text': '6*2cm', 'start': 20, 'end': 25, 'probability': 0.9670914301489972}]}]

1.3使用Taskflow UIE进行实体抽取、关系抽取、事件抽取、情感分类、观点抽取

# 实体抽取schema = ['时间', '赛手', '赛事名称']ie.set_schema(schema)ie('2月8日上午北京冬奥会自由式滑雪女子大跳台决赛中中国选手谷爱凌以188.25分获得金牌!')

[{'时间': [{'text': '2月8日上午', 'start': 0, 'end': 6, 'probability': 0.9857379716035553}], '赛手': [{'text': '中国选手谷爱凌', 'start': 24, 'end': 31, 'probability': 0.7232891682586384}], '赛事名称': [{'text': '北京冬奥会自由式滑雪女子大跳台决赛', 'start': 6, 'end': 23, 'probability': 0.8503080086948529}]}]

# 关系抽取schema = {'歌曲名称': ['歌手', '所属专辑']} ie.set_schema(schema)ie('《告别了》是孙耀威在专辑爱的故事里面的歌曲')

[{'歌曲名称': [{'text': '告别了', 'start': 1, 'end': 4, 'probability': 0.629614912348881, 'relations': {'歌手': [{'text': '孙耀威', 'start': 6, 'end': 9, 'probability': 0.9988381005599081}], '所属专辑': [{'text': '爱的故事', 'start': 12, 'end': 16, 'probability': 0.9968462078543183}]}}, {'text': '爱的故事', 'start': 12, 'end': 16, 'probability': 0.28168707817316374, 'relations': {'歌手': [{'text': '孙耀威', 'start': 6, 'end': 9, 'probability': 0.9951415104192272}]}}]}]

# 事件抽取schema = {'地震触发词': ['地震强度', '时间', '震中位置', '震源深度']} # 事件需要通过xxx触发词来选择触发词ie.set_schema(schema)ie('中国地震台网正式测定:5月16日06时08分在云南临沧市凤庆县(北纬24.34度,东经99.98度)发生3.5级地震,震源深度10千米。')

[{'地震触发词': [{'text': '地震', 'start': 56, 'end': 58, 'probability': 0.9977425555988333, 'relations': {'地震强度': [{'text': '3.5级', 'start': 52, 'end': 56, 'probability': 0.998080217831891}], '时间': [{'text': '5月16日06时08分', 'start': 11, 'end': 22, 'probability': 0.9853299772936026}], '震中位置': [{'text': '云南临沧市凤庆县(北纬24.34度,东经99.98度)', 'start': 23, 'end': 50, 'probability': 0.7874014521275967}], '震源深度': [{'text': '10千米', 'start': 63, 'end': 67, 'probability': 0.9937974422968665}]}}]}]

# 情感倾向分类schema = '情感倾向[正向,负向]' # 分类任务需要[]来设置分类的labelie.set_schema(schema) ie('这个产品用起来真的很流畅,我非常喜欢')

[{'情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.9990024058203417}]}]

# 评价抽取schema = {'评价维度': ['观点词', '情感倾向[正向,负向]']} # 评价抽取的schema是固定的,后续直接按照这个schema进行观点抽取ie.set_schema(schema) # Reset schemaie('地址不错,服务一般,设施陈旧')

[{'评价维度': [{'text': '地址', 'start': 0, 'end': 2, 'probability': 0.9888139270606509, 'relations': {'观点词': [{'text': '不错', 'start': 2, 'end': 4, 'probability': 0.9927845886615216}], '情感倾向[正向,负向]': [{'text': '正向', 'probability': 0.998228967796706}]}}, {'text': '设施', 'start': 10, 'end': 12, 'probability': 0.9588298547520608, 'relations': {'观点词': [{'text': '陈旧', 'start': 12, 'end': 14, 'probability': 0.928675281256794}], '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9949388606013692}]}}, {'text': '服务', 'start': 5, 'end': 7, 'probability': 0.9592857070501211, 'relations': {'观点词': [{'text': '一般', 'start': 7, 'end': 9, 'probability': 0.9949359182521675}], '情感倾向[正向,负向]': [{'text': '负向', 'probability': 0.9952498258302498}]}}]}]

# 跨任务跨领域抽取schema = ['寺庙', {'丈夫': '妻子'}] # 抽取的任务中包含了实体抽取和关系抽取ie.set_schema(schema)ie('李治即位后,让身在感业寺的武则天续起头发,重新纳入后宫。')

[{'寺庙': [{'text': '感业寺', 'start': 9, 'end': 12, 'probability': 0.9888581774497425}], '丈夫': [{'text': '李治', 'start': 0, 'end': 2, 'probability': 0.989690572797457, 'relations': {'妻子': [{'text': '武则天', 'start': 13, 'end': 16, 'probability': 0.9987625986790256}]}}]}]

1.4使用Taskflow UIE一些技巧1.4.1. 调整batch_size提升预测效率

from paddlenlp import Taskflowschema = ['费用']ie.set_schema(schema)ie = Taskflow('information_extraction', schema=schema, batch_size=2) #资源不充裕情况,batch_size设置小点,利用率增加。。ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

[{'费用': [{'text': '46块钱', 'start': 13, 'end': 17, 'probability': 0.9781786110574338}]}, {'费用': [{'text': '110元', 'start': 11, 'end': 15, 'probability': 0.9504088995163151}]}, {'费用': [{'text': '46元', 'start': 21, 'end': 24, 'probability': 0.9753814247531167}]}, {'费用': [{'text': '21元', 'start': 15, 'end': 18, 'probability': 0.9761294626311425}]}]

1.4.2. 使用UIE-Tiny模型来加快模型预测速度

from paddlenlp import Taskflowschema = ['费用']ie.set_schema(schema)ie = Taskflow('information_extraction', schema=schema, batch_size=2, model='uie-tiny') #ie(['二十号21点49分打车回家46块钱', '8月3号往返机场交通费110元', '2019年10月17日22点18分回家打车46元', '三月三0号23点10分加班打车21元'])

[{'费用': [{'text': '46块钱', 'start': 13, 'end': 17, 'probability': 0.8945340489542026}]}, {'费用': [{'text': '110元', 'start': 11, 'end': 15, 'probability': 0.9757676375014448}]}, {'费用': [{'text': '46元', 'start': 21, 'end': 24, 'probability': 0.860397941604333}]}, {'费用': [{'text': '21元', 'start': 15, 'end': 18, 'probability': 0.8595131018474689}]}]

2.小样本提升UIE效果

Taskflow中的UIE基线版本我们是通过大量的有标签样本进行训练,但是UIE抽取的效果面对部分子领域的效果也不是令人满意,UIE可以通过小样本就可以快速提升效果。 为什么UIE可以通过小样本来提升效果呢?UIE的建模方式主要是通过 Prompt 方式来建模, Prompt 在小样本上进行微调效果非常有效,下面我们通过一个具体的case 来展示UIE微调的效果。

2.1语音报销工单信息抽取1. 背景

在某公司内部可以通过语音输入来报销打车费用,通过语音ASR模型可以将语音识别为文字,同时对文字信息进行信息抽取,抽取的信息主要是包括了4个方面,时间、出发地、目的地、费用,通过对文字4个方面的信息进行抽取就可以完成一个报销工单的填写。

2. 挑战

目前Taskflow UIE任务对于这种非常垂类的任务效果没有完全达到工业使用水平,因此需要一定的微调手段来完成UIE模型的微调来提升模型的效果,下面是一些case的展现

ie.set_schema(['时间', '出发地', '目的地', '费用'])ie('10月16日高铁从杭州到上海南站车次d5414共48元') # 无法准确抽取出发地、目的地

[{'时间': [{'text': '10月16日', 'start': 0, 'end': 6, 'probability': 0.9552445817793149}], '出发地': [{'text': '杭州', 'start': 9, 'end': 11, 'probability': 0.5713024802221334}], '费用': [{'text': '48元', 'start': 24, 'end': 27, 'probability': 0.8932524634666485}]}]

2.2 标注数据

参考链接详细版本—doccano标注过程 我们推荐使用数据标注平台doccano 进行数据标注,本案例也打通了从标注到训练的通道,即doccano导出数据后可通过doccano.py脚本轻松将数据转换为输入模型时需要的形式,实现无缝衔接。为达到这个目的,您需要按以下标注规则在doccano平台上标注数据:

Step 1. 本地安装doccano(请勿在AI Studio内部运行,本地测试环境python=3.8)

$ pip install doccano

Step 2. 初始化数据库和账户(用户名和密码可替换为自定义值)

$ doccano init

$ doccano createuser –username my_admin_name –password my_password

Step 3. 启动doccano

在一个窗口启动doccano的WebServer,保持窗口

$ doccano webserver –port 8000

在另一个窗口启动doccano的任务队列

$ doccano task

Step 4. 运行doccano来标注实体和关系

打开浏览器(推荐Chrome),在地址栏中输入http://127.0.0.1:8000/后回车即得以下界面。登陆账户。点击右上角的LOGIN,输入Step 2中设置的用户名和密码登陆。创建项目。点击左上角的CREATE,跳转至以下界面。勾选序列标注(Sequence Labeling)填写项目名称(Project name)等必要信息勾选允许实体重叠(Allow overlapping entity)、使用关系标注(Use relation labeling)创建完成后,项目首页视频提供了从数据导入到导出的七个步骤的详细说明。设置标签。在Labels一栏点击Actions,Create Label手动设置或者Import Labels从文件导入。最上边Span表示实体标签,Relation表示关系标签,需要分别设置。导入数据。在Datasets一栏点击Actions、Import Dataset从文件导入文本数据。根据文件格式(File format)给出的示例,选择适合的格式导入自定义数据文件。导入成功后即跳转至数据列表。标注数据。点击每条数据最右边的Annotate按钮开始标记。标记页面右侧的标签类型(Label Types)开关可在实体标签和关系标签之间切换。实体标注:直接用鼠标选取文本即可标注实体。关系标注:首先点击待标注的关系标签,接着依次点击相应的头尾实体可完成关系标注。导出数据。在Datasets一栏点击Actions、Export Dataset导出已标注的数据。将标注数据转化成UIE训练所需数据将doccano平台的标注数据保存在./data/目录。对于语音报销工单信息抽取的场景,可以直接下载标注好的数据。各个任务标注文档

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/uie/doccano.md

! wget https://paddlenlp.bj.bcebos.com/datasets/erniekit/speech-cmd-analysis/audio-expense-account.jsonl! mv audio-expense-account.jsonl ./data/

运行以下代码将标注数据转换为UIE训练所需要的数据 splits 0.2 0.8 0.0 训练集 测试集 验证集

可配置参数说明doccano_file: 从doccano导出的数据标注文件。save_dir: 训练数据的保存目录,默认存储在data目录下。negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。task_type: 选择任务类型,可选有抽取和分类两种类型的任务。options: 指定分类任务的类别标签,该参数只对分类类型任务有效。prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。is_shuffle: 是否对数据集进行随机打散,默认为True。seed: 随机种子,默认为1000.

! python preprocess.py --input_file ./data/audio-expense-account.jsonl --save_dir ./data/ --negative_ratio 5 --splits 0.2 0.8 0.0 --seed 1000

2.3 训练UIE模型使用标注数据进行小样本训练,模型参数保存在./checkpoint/目录。

tips: 推荐使用GPU环境,否则可能会内存溢出。CPU环境下,可以修改model为uie-tiny,适当调下batch_size。

增加准确率的话:–num_epochs 设置大点多训练训练

可配置参数说明:train_path: 训练集文件路径。dev_path: 验证集文件路径。save_dir: 模型存储路径,默认为./checkpoint。learning_rate: 学习率,默认为1e-5。batch_size: 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。max_seq_len: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。num_epochs: 训练轮数,默认为100。model: 选择模型,程序会基于选择的模型进行模型微调,可选有uie-base和uie-tiny,默认为uie-base。seed: 随机种子,默认为1000.logging_steps: 日志打印的间隔steps数,默认10。valid_steps: evaluate的间隔steps数,默认100。device: 选用什么设备进行训练,可选cpu或gpu。

! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-tiny --learning_rate 1e-5 --batch_size 2 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10

#! python finetune.py --train_path ./data/train.txt --dev_path ./data/dev.txt --save_dir ./checkpoint --model uie-base --learning_rate 1e-5 --batch_size 16 --max_seq_len 512 --num_epochs 50 --seed 1000 --logging_steps 10 --valid_steps 10

使用小样本训练后的模型参数再次测试无法正确抽取的case。

from paddlenlp import Taskflowschema = ['时间', '出发地', '目的地', '费用']few_ie = Taskflow('information_extraction', schema=schema, task_path='./checkpoint/model_best')few_ie(['10月16日高铁从杭州到上海南站车次d5414共48元', '10月22日从公司到首都机场38元过路费'])

[{'时间': [{'text': '10月16日', 'start': 0, 'end': 6, 'probability': 0.9998620769863464}], '出发地': [{'text': '杭州', 'start': 9, 'end': 11, 'probability': 0.997861665709749}], '目的地': [{'text': '上海南站', 'start': 12, 'end': 16, 'probability': 0.9974161074329579}], '费用': [{'text': '48', 'start': 24, 'end': 26, 'probability': 0.950222029031579}]}, {'时间': [{'text': '10月22日', 'start': 0, 'end': 6, 'probability': 0.9995716364718135}], '目的地': [{'text': '首都机场', 'start': 10, 'end': 14, 'probability': 0.9984550308953608}], '费用': [{'text': '38', 'start': 14, 'end': 16, 'probability': 0.9465688451171062}]}]

声明:壹贝网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,版权归原作者wangteng@admin所有,原文出处。若您的权利被侵害,请联系 756005163@qq.com 删除。

本文链接:https://www.ebaa.cn/38014.html

(0)
上一篇 2024年12月9日
下一篇 2024年12月9日

相关推荐

  • 出国留学大概需要多少钱

    德国的公立大学学费几乎为零,只需支付每学期100至350欧元的费用,相对其他欧洲国家生活费较为合理 法国的公立高等教育机构的学费为每年2700欧元(本科)和每年3700欧元(硕士),生活费相对适中,尤其是巴黎以外的地方 意大利的学士学位的学费每年在900到4000欧元之间,硕士学费在500到4500欧元之间,生活费较为实惠,且有许多奖学金可供申请。 新加坡留…

    2024年6月26日
  • 沃顿商学院和哈弗哪个厉害

    近日,《彭博周刊》调查了全美在读MBA学生、校友和招聘人员,综合学生毕业后的薪酬和就业数据,发布了就业率最高的商学院排名! 本次排名主要参考以下4个指标,其中薪酬指数占比最高 薪酬指数:37.5%(毕业起薪,毕业后三个月就业率,校友收入等)校友网络:25.7%(学生与校友互动质量和频率,学校光环效应等)学术质量:21.3%(课程与实践联系程度,导师支持度,班…

    2025年4月2日
  • 金泽美术工艺大学(金泽美术工艺大学相当于国内什么大学)

    日本的艺术学校你会想起哪一所呢? 只知道日本的武藏野美术大学和多摩美术大学? 其实,在日本还有五艺之称的日本国公立艺术大学,分别是东京艺术大学、京都市艺术大学、爱知县立艺术大学、冲绳县立艺术大学,和金泽美术工艺大学,作为国公立大学,实力雄厚还各具特色。 今天,日研君就为大家介绍五艺大之一,金泽美术工艺大学。 专精教学 かなざわびじゅつこうげいだいがく 创立于…

    2023年11月13日
  • 辽宁最好的十所大学

    \r 提到辽宁的高校,许多人首先想到的或许是那些享誉全国的“老牌名校”。事实上,辽宁作为中国重要的教育大省,高校资源丰富,学科门类齐全。每年高考季,众多考生和家长都在为如何选择一所真正实力强劲、发展潜力大的大学而苦恼。\r2025年最新高校排行榜为我们揭示了辽宁省前十的大学格局,这不仅是对学校综合实力的权威评判,也为考生报考提供了重要参考。选对大学,或许就为…

    2025年7月21日
  • 瓦伦西亚理工大学专升硕_瓦伦西亚理工大学专升硕专业

    随着国内的本科生、研究生越来越多,专科毕业生的就业压力越来越大,很多同学想曲线救国,到国外提升学历,从而获得一个好文凭。于是这几年,在西班牙慢慢掀起了一股专科申请研究生的热潮。 专升硕一直是西班牙硕士留学的一个优势所在,专科毕业的学生不需要在国内专升本,到了西班牙可以直接进行硕士阶段的学习,并且硕士学历国内可以认可。 大部分西班牙大学硕士仅需一年即可毕业,学…

    2024年3月9日
  • 哈佛麻省理工大学世界排名

    根据2025年不同权威机构发布的世界大学排名,前十名高校存在差异,主要源于评价指标不同。以下是综合各榜单的整理: 一、‌U.S. News 2025-2026排名‌(可信度:非常高)‌ ‌哈佛大学‌(美国) ‌麻省理工学院‌(美国) ‌斯坦福大学‌(美国) ‌牛津大学‌(英国) ‌剑桥大学‌(英国) ‌加州大学伯克利分校‌(美国) ‌伦敦大学学院‌(英国) …

    2025年8月23日
  • 美国的社区大学是什么概念

    说到美国社区大学,美签之家的谭老师发现有很多人会进入误区。社区大学=野鸡大学,就是一群考不上大学的学生跑到国外混日子的!但其实社区大学并没有大家想得那么糟糕! 今天,我们将会给大家详细分析什么是美国社区大学?以及如何选择一个合适自己的社区大学?希望通过这篇文章可以消除大家心中的偏见! 美国社区大学是美国的两年制大学,以公立学校为主,其文凭是由美国政府和教育局…

    2024年12月10日
  • 亚当森大学在马尼拉什么位置

    情况通报 封面新闻记者 吴德玉 张峥 闫雯雯 何方迪 7月25日上午,湖南通报1800万引进23名菲律宾博士:邵阳学院校党委书记被免。此前湖南省邵阳学院发布于该校官网的一份引进人才待遇公示,引发舆论争议。公示显示,该校本批次引进23名在菲律宾亚当森大学读取哲学(教育学)专业的博士生。根据这则公示,兑付上述23名博士的待遇,该校总计需花费1800万元,也有报道…

    2024年12月21日
  • 美国前三十大学世界排名

    世界Top(顶级)30所大学排行榜 吴国发 2025年10月14日 内容提要:本文先说明国际上几个机构对大学排名的不合理现象,再提出我们的排名标准,然后推出“世界Top(定级)30所大学排行榜”,最后说明本排行榜的特点。 关键词:大学排名 排行榜 哈佛大学 麻省理工 清华大学 北京大学 世界大学排行榜的机构及其问题 国际上公认的三个大学排名机构如下: Ø 美…

    21小时前
  • 伦敦大学玛丽女王学院法律怎么样

    英国作为英美法系的起源地以及世界宪法的母国,其法律体系影响深远,众多国家的法律制度都以英国法律为基础,像亚洲、非洲的大部分英联邦国家,还有美国、加拿大、澳大利亚、新西兰等国。英国高校的法律专业在全球颇具知名度,教学实力强劲,法律从业者也备受认可。英国律师业发达,全球前 10 大律师事务所有 4 所总部设在伦敦,大量国际公司在此设立办公室,伦敦处理的国际和商业…

    2025年7月27日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信