辛辛那提大学孙宇杰

辛辛那提大学孙宇杰团队NC: 利用铜银催化剂电催化甲醛氧化耦合水还原实现表观法拉第效率200%的阴阳极同时制氢

论文相关信息:

第一作者(或者共同第一作者): 李国栋

通讯作者(或者共同通讯作者): 孙宇杰,De-en Jiang

通讯单位: 辛辛那提大学, 范德堡大学

论文DOI: 10.1038/s41467-023-36142-7

全文速览:

电解水制氢被广泛认为是生产清洁氢气的有效技术。然而由于阳极动力学缓慢的OER反应,该技术的大规模利用面临着需要较高电压和较低的能量转化效率的问题。有鉴于此,辛辛那提大学孙宇杰团队报道了一种有效的策略,利用热力学上更有利的甲醛部分电氧化反应来取代OER,进而耦合水还原实现较低电压下表观法拉第效率200%的阴阳两极同时制氢。

背景介绍:

氢气不仅是化学工业的重要原料(如石油精炼、哈伯法合成氨),而且作为一种清洁、高效、可持续的二次能源有潜力成为整合不同基础设施的能源载体,是实现碳中和的重要选择。目前,基于化石原料制氢(煤炭、天然气等重整制氢)的技术路线已十分成熟,但使用化石能源作为原料终究不可持续,而且会排放大量二氧化碳,因此需要更加清洁环保的制氢技术。

​其中,电解水制氢技术(包括两个半反应:阴极HER和阳极OER)因其工艺流程简单可靠,产生的氢气纯度高,同时不产生污染,吸引了全球各国的关注。但是,水分解的热力学决定了电解水需要远大于1.23 V的电压输入,进而造成高的制氢能源消耗(>4.5 – 6 kWh/m3 H2),各国研究人员为此在开发各种先进电催化剂和电解槽方面做出了许多努力。由于OER反应能耗更高且产物O2为较低附加值产品,因此探索各种氧化反应以取代高能耗的OER并生产高附加值化学品是高效节能制氢的重要研究领域。

研究出发点:

我们课题组一直致力于小分子电化学转化研究,在此之前报道了一系列生物质中间体氧化耦合HER的电催化体系用于高效节能制氢和合成高附加值化学品(例如 Nat. Commun., 2021, 12, 1868; Acc. Chem. Res., 2018, 51, 1571-1580; Chem, 2018, 4, 637-649; Angew. Chem. Int. Ed. 2016, 55, 9913-9917; J. Am. Chem. Soc. 2016, 138, 13639-13646.)。

​其他小分子(尿素、氨和肼等)电氧化也被报道用来替代OER从水中高效低能耗制氢,但在阳极会产生低价值的CO2或者N2。尽管以小分子氧化替代OER的研究方向取得了一些进展,但是在这些体系中氢气通常只能在阴极产生,而且大多数电催化系统仍需要大于1 V的电压来达到工业级电流密度(>500 mA/cm2)。此外,利用生物质原料,如HMF和糠醛耦合HER来大规模生产H2仍然是值得商榷的,因为它们的可推广性和未来的H2需求性之间可能存在巨大差异。因此,设计开发一种可替代OER的策略且以较低的电压来制取H2,甚至更理想的是在阴极和阳极同时产生H2,仍然是一个挑战。

我们从储氢分子产生H2受到启发,如NaBH4, NH3BH3,CH3OH和HCOOH,它们能够在热催化条件下释放H2。在液态有机储氢分子中,甲醛(HCHO)引人注目,其部分氧化(FOR)能够在阳极释放H2,而且热力学电位非常小(HCHO + 2OH- → HCOO- + 1/2H2 + H2O + e-, E = –0.22 V vs RHE,图1)。更重要的是,HCHO是低成本的化学原料,年产量大,而其氧化产物甲酸盐(或甲酸)也是更高附加值的化学品。此外,如果废水污染物中的有毒甲醛残留物作为原料,将FOR与HER结合起来制取H2,也可以产生环境效益。

基于此,我们报告了一种新型的廉价电催化系统,使用Cu3Ag7(+)||Ni3N/Ni(–)作为催化剂,能够在阴极和阳极同时产生H2。在0.6 V的电池电压下可以获得500 mA/cm2电流密度和200 %的表观法拉第效率。在电流密度为100和500 mA/cm2时,我们的电解系统生产H2的能耗分别仅为0.30和0.70 kWh/1 m3 H2,远低于电解水的理论能量需求(2.93 kWh/1 m3 H2)。而且,除了甲醛水溶液,当使用固体多聚甲醛作为原料时也能实现小电压输入下的阴阳两极同时产氢,显示了其在实际应用中的巨大潜力。

图文解析:

Fig. 1 Schematic illustration of water electrolysis and HCHO electrooxidation. a Conventional electrocatalytic water splitting under alkaline conditions. b Electrocatalytic water reduction coupled with HCHO oxidation under alkaline conditions.

Fig. 2 HCHO electrooxidation over Cu, Ag, and CuAg catalysts on RDE. CV curves of Cu/RDE (blue), Ag/RDE (black) and Cu3Ag7/RDE (red) in 1.0 M KOH in the absence (dashed) and presence (solid) of 0.6 M HCHO collected at 1500 rpm and 10 mV/s. Inset shows the expanded CV of copper oxidation on Cu3Ag7/RDE.

(1)筛选用于甲醛氧化的催化剂:基于甲醛电氧化之前的报道,我们利用Cu和Ag的硝酸盐作为原料,通过简易的电沉积在旋转圆盘电极上制备相应的金属电催化剂。如图2所示,在没有HCHO的情况下,Cu/RDE在0.5 V vs RHE出现氧化峰(Cu+/0),Ag/RDE的氧化峰在~1.2 V vs RHE。当加入0.6 M HCHO时,Cu/RDE在0.05 V vs RHE处有明显的阳极电流上升,在0.4 V vs RHE达到10 mA/cm2,表明在Cu/RDE上发生HCHO电化学氧化。虽然Ag/RDE上的HCHO氧化起始电位较在Cu/RDE上更正,但在Ag/RDE上有更明显的电流上升。据此,通过系统地改变Cu/Ag的比例,从9/1到1/9合成一系列催化剂,通过比较所有CuAg/RDE样品以及Cu/RDE和Ag/RDE在相同条件下测量的CV图(详见原文),Cu3Ag7/RDE表现出最好的HCHO电氧化性能。

Fig. 3 Characterizations and HCHO oxidation performances of Cu3Ag7/CF electrocatalysts. a SEM image of as-prepared Cu3Ag7/CF. b XRD patterns of Cu/CP, Ag/CP, and Cu3Ag7/CP prior to and post electrolysis. c CV curves of Cu3Ag7/CF for HCHO oxidation (red) in 1.0 M KOH with 0.6 M HCHO, Ni3N/Ni/NF for HER (black) and Ni/NF for OER (blue) in 1.0 M KOH collected at 10 mV/s. Voltage gaps to reach 100 and 500 mA/cm2 are indicated. d The two-electrode CV curves of HER/FOR (red) and HER/OER (blue) collected at 10 mV/s, in which Cu3Ag7/CF and Ni3N/Ni/NF were employed as the anode and cathode for the former while Ni/NF and Ni3N/Ni/NF for the latter. For FOR, the anolyte was 1.0 M KOH and 0.6 M HCHO while for all the other conditions, 1.0 M KOH was the electrolyte.

(2)电解性能测试:我们随后将Cu3Ag7电沉积在高多孔和高导电的基底上进行电解研究。为了避免引入其他金属,采用市售的泡沫铜作为催化剂载体和集流体。利用电沉积方法在泡沫铜(CF)上制备Cu3Ag7(详见原文)。如图3所示,在1.0 M KOH和0.6 M HCHO中,电氧化HCHO测试在Cu3Ag7/CF上显示出几乎为零的起始电位和快速阳极电流增长,仅在0.10和0.28 V vs RHE时电流密度便可达100和500 mA/cm2。与此形成鲜明对比的是,当Ni/NF作为OER电催化剂时,需要更高的电位(1.62和1.76 V vs RHE)才能达到相同的电流密度。通过Cu3Ag7作为催化剂构筑的Cu3Ag7(+)||Ni3N/Ni(–)电解池能够在阴极和阳极同时产生H2,只需要0.22和0.60 V的电压就可以分别提供100和500 mA cm-2电流密度,然而传统的电解水需要1.70和1.96 V的电压输入(图3d)。

Fig. 4 Dual hydrogen production of FOR/HER system. The electrolysis experiments were conducted in a two-electrode electrolyzer using Cu3Ag7/CF anode and Ni3N/Ni/NF cathode. a Chronoamperometric curve collected at a cell voltage of 0.6 V in 1.0 M KOH with the continuous addition of 0.1 M HCOOH, 0.1 M CH3OH, and 0.1 M HCHO in the anode chamber. b Comparison of the experimentally measured amount of H2 from the anode chamber with different voltage inputs. Inset shows the Faradaic efficiency of H2 production. c Comparison of the experimentally measured H2 amounts with the theoretical H2 amounts calculated from the passed charge for both cathode and anode chambers during an electrolysis at a cell voltage of 0.6 V. d Faradaic efficiencies of H2 and formate production for five consecutive 1 h controlled-current (150 mA) electrolysis cycles. e Chronopotentiometric curves for five consecutive controlled-current electrolysis cycles conducted at 100 and 500 mA/cm2. f Chronoamperometric curves at a cell voltage of 0.6 V with the periodic replenishment of fresh HCHO back to its original 0.1 M concentration in anolyte.

(3)产物分析:由于市售的HCHO(37w%)含有甲醇作为稳定剂,而且HCHO氧化在碱性条件下会产生甲酸盐,所以确定Cu3Ag7/CF是否也能在较小的电位窗口内催化甲醇和甲酸盐的氧化就非常关键。图4a显示了Cu3Ag7/CF在1.0 M KOH中连续加入0.1 M HCOOH、0.1 M CH3OH和0.1 M HCHO时的计时电流曲线。在加入甲酸或甲醇时,在0.6 V的电压输入下观察到的阳极电流增加可以忽略不计,这表明Cu3Ag7/CF在此电压下难以发生甲酸和甲醇的电化学氧化。相反,加入0.1 M HCHO后,阳极电流立即上升到230 mA/cm2。这些结果证明,Cu3Ag7/CF在低电压下对HCHO的电化学氧化具有很好的选择性,而不受甲醇和甲酸盐的影响。气相色谱检测结果也证实了H型电解池中产生的气体是H2。

​比较实验测量的H2量和基于不同电压输入(0.2 – 0.8 V)的电解过程中通过的电荷计算的H2量,结果证实在整个测试电压范围内阳极产H2的法拉第效率(FE)可达100%(图4b)。同时,Ni3N/Ni/NF作为阴极也能够以100%的法拉第效率制氢。在0.8 V电压下进行电解(图4c),对比阴极和阳极室的测量H2量与理论H2量,几乎完全一致,这表明了阴阳两极都实现了100%法拉第效率的制氢,整体达到表观200%法拉第效率制H2。此外,通过检测液体产物发现阳极也实现了法拉第效率100%的甲酸盐生产。同时量化对比甲醛电氧化反应前后的结果,表明HCHO的碳平衡保持100%。

Fig. 5 DFT theoretical computations. a Proposed mechanism of HCHO oxidation to HCOOH. b Computed adsorption energy of the H2C(OH)O intermediate on the three model surfaces. c Optimized adsorption geometry of H2C(OH)O on Cu3Ag7. d Initial (IS), transition (TS), and final (FS) states of H2C(OH)O dehydrogenation on the three model surfaces, together with the TS structure on Cu3Ag7. e H2 formation via the Tafel step on the three surfaces.

(4)理论计算:DFT计算表明甲醛生成的H2C(OH)O中间体在Cu3Ag7催化剂上的吸附稳定性比Cu或Ag催化剂上更高,Cu3Ag7上的C-H裂解要比在Cu或Ag上更有利进行。C-H裂解后,在Cu3Ag7上从两个H*也更容易形成H2。

Fig. 6 Electrocatalytic paraformaldehyde oxidation and energy efficiency analysis. a CV curves of Cu3Ag7/CF (red) in 1.0 M KOH with 10 g/L paraformaldehyde and Ni/NF (blue) in 1.0 M KOH collected at 10 mV/s. b Faradaic efficiencies of H2 and formate production in the anode chamber during each electrolysis at different potential using Cu3Ag7/CF as the anode, 1.0 M KOH as the catholyte, and 1.0 M KOH with 10 g/L paraformaldehyde as the anolyte. c Comparative analysis of the calculated electricity consumption for H2 production between our formaldehyde (red) or paraformaldehyde (black) oxidation-integrated strategy using the Ni3N/Ni/NF(-)||Cu3Ag7/CF(+) electrode couple and traditional water electrolysis (HER/OER) using the Ni3N/Ni/NF(-)||Ni/NF(+) electrode couple.

(5)多聚甲醛的电氧化和能源效率分析:与浓度有限并含有甲醇作为稳定剂的HCHO水溶液(37wt%)相比,多聚甲醛在普通环境条件下是固体,且具有更高的质量密度和更低的成本。而当多聚甲醛溶解在水溶液中时,可以释放出HCHO。图6a所示,Cu3Ag7对多聚甲醛的氧化也表现出优异的电催化活性,与Ni/NF上的OER相比,达到100和500 mA/cm2所需的电压要小得多。而且在0.1到0.4 V vs RHE的不同电位下,制取H2和甲酸盐的法拉第效率几乎都为100%(图6b)。值得注意的是,当使用多聚甲醛作为氧化底物时,由Cannizzaro反应生成的甲醇和甲酸盐的量远小于比直接使用HCHO溶液,这表明使用多聚甲醛作为原料是阴阳两极同时制氢策略的另一个优势。

从能源效率的角度来看,该系统在很大程度上超过了那些传统的电解水系统。图6c比较了使用Ni3N/Ni/NF(-)||Cu3Ag7/CF(+)电极组的(HER/FOR)和使用Ni3N/Ni/NF(-)||Ni/NF(+)电极组(HER/OER)之间的电力消耗。在电流密度为100和500 mA/cm2时,我们的电解系统生产H2的能耗分别仅为0.30和0.70 kWh/1 m3 H2,远远低于传统电解水的能耗(4.10 和4.70 kWh/1 m3 H2)。

总结与展望:

在本课题中,我们报道了一种双金属电催化剂Cu3Ag7,用于在电解池的阳极高效制H2,并将甲醛的部分氧化与水的还原结合起来,实现了阴阳双电极同时制氢,从而获得200 %的表观法拉第效率。DFT计算揭示了H2C(OH)O*中间物在Cu3Ag7上的关键吸附构象,它非常有利于C-H裂解。除甲醛溶液外,固相多聚甲醛也同样可以作为原料来实现类似的性能,为大规模的实际应用提供了一条潜在的途径。

原文链接:

​https://www.nature.com/articles/s41467-023-36142-7

课题组主页:

The Sun Group: https://www.yujiesun.org/

声明:壹贝网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,版权归原作者wangteng@admin所有,原文出处。若您的权利被侵害,请联系 756005163@qq.com 删除。

本文链接:https://www.ebaa.cn/48684.html

(0)
上一篇 2025年7月27日
下一篇 2025年7月27日

相关推荐

  • 圣地亚哥州立大学_圣地亚哥州立大学QS排名

    圣地亚哥州立大学(San Diego State University,简称SDSU)成立于1897年,位于美国加利福尼亚州南部的圣地亚哥市,是23所加州州立大学系统大学的一员,同时也是圣地亚哥地区历史最悠久的大学。 圣地亚哥州立大学名列全美公立大学前80名,并提供近160个本科专业和辅修科目,近100个研究生学位,每年为超过35,000名学生提供了参加学术…

    2024年3月2日
  • 日本护理专业留学条件

    对于追求稳定工作的留学生来讲,护理学一直是相对容易且便捷的选项。因种种原因日本护理学专业人士往往供不应求,日本老龄化与对老年人养老的政策也加强了护理学专业人士就业的稳定性。 一、老龄化原因 日本是全球人口老龄化最严重的国家之一,65岁以上人口占比接近三分之一。随着老龄化程度的加深,医疗和养老护理需求激增。日本护士岗位缺口持续扩大,这一巨大的市场需求为留学生提…

    2025年12月1日
  • 佛山科学技术学院学费多少钱

    不少人因为名字带有学院的缘故,可能会觉得佛山科学技术学院是一所民办本科院校,所以收费比较高,自己的孩子考得不好,也不是很想报读。但其实佛山科学技术学院是一所公办本科高校,以前改名佛山大学,不知道为什么改回叫佛山科学技术学院。 但总的来说,佛山科学技术学院作为一所公办高校,在广东选调生,广州选调生,佛山选调生等领域有不少的优势。也因为佛山经济发展的越来越好,但…

    2025年7月17日
  • 澳州维多利亚大学排名多少

    澳大利亚的维多利亚大学是澳洲有名的院校,但是对于国内的学生来说,其院校的真实情况并不是十分的了解,只能通过排名的情况了解该院校的情况,那么,澳大利亚维多利亚大学世界排名是怎么样的? 澳大利亚维多利亚大学世界排名是怎么样的? 全球院校排名 QS世界大学排名  2013年9月  830 全球高校网(4ICU)7月份大洋洲大学50强排名  2013年7月  37 …

    2024年10月10日
  • 爱尔兰国立大学排名

    爱尔兰国立都柏林大学(University College Dublin)又称都柏林大学,简称UCD或UCDublin,是一所位于爱尔兰首都都柏林的公立研究型大学。UCD不仅仅是爱尔兰顶尖学府,也是欧洲负有盛名的大学。 大学致力于提供一流的教学和科研教育,在2026年QS世界大学排名中位于第118位,其中欧洲商学院排名23位,拥有三皇冠认证,硕士学位课程也是…

    2025年11月14日
  • 全球动画专业大学排名_

    随着全球影视娱乐行业的不断发展,动画专业已经成为设计领域中越来越热门的专业,但是动画的表现形式五花八门,不同国家之间的动画风格与侧重点也大相径庭。比如欧美的平面动画大多线条简洁利落,人物动作设定夸张;日本的平面动画大多人物形象十分细腻,场景塑造唯美。 这也使得不同国家院校的动画专业在风格上会有各自的偏向,因此,同学们在选择留学的动画专业院校时也要多做斟酌,明…

    2024年4月15日
  • 世界建筑学排名

    #头条创作挑战赛# 建筑学是一门非常重要的学科,从全球范围内而言,哪些大学的建筑学学科最强呢?根据2023QS建筑学科排名,以下这20所大学,成为公认的全球大学建筑学学科20强。 1. 伦敦大学学院 2. 麻省理工学院 3. 代尔夫特理工大学 4. 苏黎世联邦理工大学 5. 曼彻斯特建筑学院 6. 哈佛大学 7. 新加坡国立大学 8. 清华大学 9. 加州大…

    2025年12月2日
  • 意大利本科留学一年费用

    意大利是文艺复兴发源地,也是罗马帝国的后身,是欧洲文化之源。意大利有着灿烂悠久的历史文化,也有众多历史文化名城和遗址,有条条大道通罗马,时尚之都米兰,水上都市威尼斯,欧洲文艺复兴时期的文化中心佛罗伦萨,西西里的美丽传说,比萨斜塔等旅游城市。意大利足球甲级联赛是欧洲最顶级的足球联赛之一,曾有“小世界杯”的称号,而意大利国家队已经4次获得世界杯冠军。 一、意大利…

    2025年10月20日
  • 澳洲留学一年费用多少人民币

    澳大利亚,全球著名发达国家,来澳洲留学,是很多人的梦想。 听身边人的推荐,最终我决定来到澳洲留学。 出国留学,在时间和金钱上,都可以说是一笔很大的投资,也是影响人一生的经历。 一直以来很多人问我,来澳洲留学是否值得。 我的回答是: 非常不值得,千万不要浪费时间来澳洲留学! 首先就是花费 在澳洲上大学,算下来一年的费用50多万人民币 这对很多家庭依然是笔不小的…

    2023年11月30日
  • 澳大利亚巴拉瑞特大学硕士张亚东

    公司代码:603869 公司简称:新智认知 第一节 重要提示 1 本年度报告摘要来自年度报告全文,为全面了解本公司的经营成果、财务状况及未来发展规划,投资者应当到上海证券交易所(www.sse.com.cn)网站仔细阅读年度报告全文。 2 本公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实性、准确性、完整性,不存在虚假记载、误导性陈述或重大…

    2024年12月12日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信