几何平均值(几何平均值的公式)

数据分析系列内容,“平均值”可靠吗?辛普森悖论是什么?总体局部如何选择?数据分析是如何应用到日常生活中的?这篇文章作者将详细给出答案,通过白话方式介绍复杂问题。推荐对数据分析感兴趣的童鞋阅读。

00 写在前面

不知道大家有没有类似的经历?有没有曾经因为追求高端的算法和工具而没有及时交付最终的业务结果,最后被老板一通批评;有没有拿着一个单点的数据分析结果就给出了一个全面的结论和建议;有没有给过一些因果倒置或者“幸存者偏差”的结论,导致业务走了弯路。这些经历大家多多少少都会遇到,为什么会犯这些错误?因为我们缺乏了一些基本的数据分析思维。

刚好最近一直在拜读郭炜的【数据分析思维课】,讲得很好,内容深入浅出,很接地气。我们很多人缺乏的不是数据分析的理论,而是在实际场景中应用理论的能力,理论+实际场景=方法论,如何把看似浮在空中的理论落地到实际的工作场景中来,就需要通过简单易懂的案例和近似白话的语言传达出来,这也是为什么会有【白话数据分析】这个系列的原因。

无论你是什么阶段什么水平,我们从生活/工作中最常见的案例出发,用最直白的文字把理论讲清楚,真正掌握数据分析的基本思维和原理,这也是写这个系列文章的初衷。

因为是白话,所以在这个系列文章中,没有晦涩难懂的公式和复杂的程序,我只是希望用大白话的形式,结合工作和生活中的各种各样的例子,学会怎样从数据分析的角度来解决这些问题,掌握一些数据分析最基本的知识。放我们再看待同一件事情的时候,思路和以前不一样了,可以从数据的角度来诠释身边发生的事情,用数据的思维来做出你的判断。

01 举个栗子

最近,公司的一位数据分析同事的竞品分析报告里提到:“我们客户的平均客单价是 100元钱,竞争对手的只有 50 元,我们的客户比对方的高端多了。所以我们产品要走高端路线”这些结论可信吗?还真不一定。

再举一个例子,某游戏公司做了款游戏,有 Android 和 iOS 版本。一个数据分析师看完用户的付费数据后,发现整体上 iOS 付费率比较高。他就直接告诉老板说,“我们 iOS的用户付费率要高于Android的用户付费率,我们应该集中资源开发iOS客户端!”这个结论可信么?还真不一定。

我们在日常生活中也会遇到这种情况,可以看到各种统计数据,“某市的人均住房面积是 120 平米”,“全国人均年收入超过 30 万元”,看完这个数据之后,开始怀疑人生了,对不起,我那么有钱我自己都不知道。

02 平均值为啥不靠谱?

以后看到这么不专业的统计报告就别看了。稍微有点数据思维的朋友都知道,这是我们被平均了,那准确客观的平均值统计应该是怎样的?

首先,我们得知道平均值究竟是什么。从概念上看,平均值有很多种。单从数学上来说,就有算术平均值、几何平均值、平方平均值、调和平均值、加权平均值等等。当然,我们日常生活中提到的平均值都默认是“算术平均值”,也就是“一组数据中所有数据之和再除以数据的个数”。

这个概念很简单,但是算术平均值有很大的短板,其容易受到极端值的影响而不能很好地表征整体水平。它无法客观准确地反映数据整体情况。更进一步来说,整体平均值是在数据呈均匀分布或者正态分布的情况下才会有意义,如果忽略整个数据的分布情况,只提平均值,其实是没有意义的。

这也就是为什么你会在读一些统计分析报告时觉得自己不是“被加薪了”,就是“被幸福了”。

03 啥是辛普森悖论?

好,再回到刚才的问题,统计报告说人均年收入达到了30w元,你很容易就会想到这里面有些年薪很高的人拉高了整体水平,所以需要分开来看,这个时候就需要去看细分群体的平均值,比整体平均值更有意义。

整体平均值不能代表各细分群体情况,局部群体结论和整体平均值结论可能会背道而驰。这个现象就是数据分析中最常见的“辛普森悖论”,辛普森悖论是 1951 年由 E.H. 辛普森提出的,简单来讲就是在分组比较中都占优势的一方,有的时候在总评中反而是失势的一方。指局部的结论和整体的结论完全相反。

再举个例子说明一下,公司要对客服部的服务质量进行评估,我们发现无论是男生还是女生,一组的优秀客服比例都比二组好,但总体上一组的优秀客服比例却比二组低。

一组的优秀客服比例是:(40+60)/(60+200)≈40%二组的优秀客服比例是:(140+4)/(200+40)=60%

二组的的整体优秀客服比例明显高于一组。再分开男女单独比较:

一组女生优秀客服比例100%,高于二组女生的70%。一组男生优秀客服比例30%,高于二组男生生的10%。

一组的男生优秀客服比例和女生优秀客服比例都比二组高,但为什么一组整体优秀客服比例却比二组低?二组的优秀客服比例高的原因在于二组女生多,一组女生少,一组女生表现虽然好,但人数太少,拉不起整个一组的表现,导致二组整体成绩比一组好。细心的同学可能注意到了,这种悖论一般出现在分组样本不均衡的情况下,上面的例子中,两组男女性比例相差较大。

我们通常会讲到“质量”这个词,而且是一起出现,但实际上,“质”与“量”是两个不同的方面,我们在考虑质的时候,一定要注意量的影响,我们如果把这两者揉成一个“质”,就会出现辛普森悖论。

回顾一下文章开头提到的案例,我们发现Android用户的付费率比iOS用户低,再细分下去就会发现,我们也是错误地把“质”(付费率)和“量”(用户数)混为一谈,结论很有可能是错误的。

因为很有可能出现这样一种情况:Android 无论是男性还是女性的付费率分别都比 iOS 高,但是整体上因为Android男性用户比较多,而iOS女性用户比较多,简单一点可以理解为,Android以男性用户为主,iOS则恰巧相反,以女性用户为主,占据主导因素的Android男性的付费率比iOS女性的付费率要低,所以最终导致整体上Android用户的付费率比iOS用户低。

简单的道理来说,就是Android最大的优势(男性用户)没有比过iOS最大的优势(女性用户),这是决定最终整体走向的关键。

04 总体/局部,我们信哪个?

那么问题来了?如果真的出现了辛普森悖论,那我们到底应该相信整体的结论还是细分的结论?我想到这里,大家应该比较清晰了,只要细分的用户群体足够大,有统计学意义上的显著性,那一定是以细分结论为准,因为真理都是需要抽丝剥茧,藏在细节处。

但是如果细分的群体太小,比如上面的例子中,细分以后各组的用户数都很小,不具统计学意义,那细分的结论就不可信了。

所以还是那句话,无论是整体还是细分,在看“质”的同时,一定要兼顾“量”的影响,这是理解辛普森悖论最重要的一点。

讲到这里,平均值和辛普森悖论也给我们一些生活上的启发,它告诉我们要抓大放小,把握住重要的东西,充分沉淀我们的优势,这样整体上我们就有更强的竞争力,不要因为某一个不重要的单项优势就得意忘形,也不要因为一个微不足道的失败就一蹶不振。

生活要有一颗平常心,我们的目标是让我们这一生的“人生平均值”逐步提高。

本文由@数据分析星球 原创发布于人人都是产品经理,未经许可,禁止转载。

题图来自 Unsplash,基于CC0协议

该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。

声明:壹贝网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流,版权归原作者wangteng@admin所有,原文出处。若您的权利被侵害,请联系 756005163@qq.com 删除。

本文链接:https://www.ebaa.cn/5351.html

(0)
上一篇 2023年9月21日
下一篇 2023年9月21日

相关推荐

  • 新东方外国语学校(新东方外国语学校在哪里)

    伴随着国家“双减”政策的实施,俞敏洪退租1500个教学点,捐赠近8万套桌椅后,体面的离开了教育行业。 而从2019年就开始流传的郭店要建新东方外国语学校的消息,自然也就打了水漂。 不建新东方外国语学校的话,将建什么?对于多数人来说都还不清楚。 今天,济南市规划局网站发布公示,即将建设的学校终于揭开了面纱,那就是济南怀瑾高级中学。 根据公示的规划,建设单位是济…

    2023年10月19日
  • 哥伦比亚大学排名风波

    当地时间12日,《美国新闻与世界报道》杂志发布了最新“2023年美国大学排名”,受此前数据造假丑闻影响,哥伦比亚大学的排名从去年的第二位猛降至第十八位,据报道,哥大已发表声明,承认有关排名数据造假。 哥伦比亚大学在一份声明中称,学校向《美国新闻与世界报道》杂志提交的以供其在2021年大学排名中参考的数据确有不实之处,同时解释是因为采用了“过时和不正确的统计方…

    2025年8月18日
  • 法国昂热大学(法国昂热大学世界排名)

    旅游餐饮是全球十大热门行业之一,并且随着疫情时代的终结,市场对酒店管理专业人才的需求也日益增大。法国是世界第一大旅游目的地国,每年接待近将近8500万游客!为了满足对酒店管理专业的高级人才的需求,法国不少公立大学都开设了旅游餐饮酒店管理专业,培养这方面的人才。 那么法国餐饮酒店管理专业中,哪些院校是值得推荐的呢?今天就来和小度一起了解一下这个专业and看一看…

    2023年11月9日
  • 上海中介排名_上海中介排名前十名

    哎呀妈呀!!! 最近真的是留学旺季来了,太多同学来询问上海留学中介哪家好了! 今天就来出一期含费用留学中介分享! 废话少说,直接上干货! ⏺【留学中介费用】 英联邦方向(英国,澳洲,中国香港,中国澳门)中介费:1.5w—3w 美国中介费:6w+ 加拿大中介费:2.5w左右 新加坡中介费:2w左右 日韩中介费:3w左右 以上费用均为参考价格,具体收费情况会根据…

    2024年4月7日
  • 留学韩国高丽大学怎样

    鲁网7月25日讯 7月25日,韩国高丽大学本科直升项目说明会在山东师范大学千佛山校区国际交流中心成功举行,会上详细介绍了这所学校的办学优势、留学价值及专属直升通道,为渴望规避国内升学内卷、冲刺世界名校的学子及家庭带来新选择。 百年名校实力强劲 据介绍,高丽大学始建于1905年,作为韩国三大名校之一,2026年QS世界排名第61位,与浙江大学、复旦大学等国内顶…

    2025年8月12日
  • 新里斯本大学全球排名

    葡华报编译《dinheiro vivo》新闻报道,由《泰晤士报》公布的2019年年轻大学排名中,新里斯本大学在欧洲排名第4位。 据悉,该排行榜对年轻大学的定义为“办学历史少于或等于50年的大学”,也就是说所有上榜的高校均是1969年之后(含1969年)建立的。该排名的参考指标主要分四大类别:资源、教学参与、成果和环境;下分学生与教师的互动,机构服务质量,师生…

    2024年10月23日
  • 河南大学排名顺序表

    走过路过不要错过今日精彩话题,感谢大家的阅览,希望能获得您的\r点赞 关注 评论 \r 小编在此先祝大家天天开心,日进斗金!年年快乐! \r 河南高校最新排名出炉,河南大学稳居全省第二,实力不容小觑;而河南农业大学则成为最强“双非”院校,表现同样亮眼。接下来带你详细了解河南省各高校最新排名情况! \r\r\r\r\r\r 近年来,河南省高校综合实力不断提升。…

    2025年8月27日
  • 什么是远程教育

    一、自考(自学考试) 1、自考没有入学考试,考生参加单科考试,所有科目合格后,颁发学历证书。每年两到四次考试。 自考以自学为主,也可以参加由其他社会培训力量或主考学校举办的自考助学班。 2、不受性别、年龄、民族、种族和已受教育程度的限制,属于完全的开放式教育。 3、自学考试采取分课考试、学分累积,最后获取文凭的方式。不受学期、学年制度的限制。 4、只要缴纳考…

    2024年6月18日
  • 广州华立科技职业学院事件

    Flash version 9,0 or greater is required You have no flash plugin installed Download latest version from here 12月17日,由广东互联网业联合会指导,羊城晚报报业集团、广州市增城区文化广电旅游体育局主办,羊城晚报品牌传播中心、广州市增城区旅游体育发展…

    2024年8月8日
  • 布莱恩特大学相当于国内大学

    科比·布莱恩特(Kobe Bryant)是NBA历史上最具传奇色彩的球员之一,他的篮球生涯不仅仅是一段辉煌的运动成就,更是一部充满坚韧、决心和不懈努力的传奇人生。以下是关于他生平的详细传记。 童年与篮球初探 1978年8月23日,科比·布莱恩特出生在美国宾夕法尼亚州的费城,是家中的第三个孩子。科比的父亲乔·布莱恩特(Joe Bryant)是一位前NBA球员,…

    2025年5月23日

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信